COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Engineering					
ACADEMIC UNIT	Financial and	inancial and Management Engineering				
LEVEL OF STUDIES	Postgraduate	duate				
COURSE CODE	II-5	SEMESTER 1				
COURSE TITLE	Operations Re	ons Research Methodologies				
if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS	i CREDITS		
,			3	6		
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).						
		n Obligatory				
INSTRU	IGUAGE OF JUSTION and INNATIONS:	k				
IS THE COURSE OF ERASMUS COURSE WE	STUDENTS					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The objective of this course is to provide students with the appropriate basic tools of mathematical programming for the decision support in management and operations systems. The course "Operations Research II" completes to a greater extent this knowledge in order to give students an entire Operations Research methodology. After the successful completion of the course, the student will have:

to know and understand the basic concepts of mathematical programming theory.

to know and understand the basic concepts of mathematical modelling.

to be in position to recognize and classify problems into different categories, i.e., linear programming, integer programming, etc. to perform the modelling of mathematical programming problems.

to be able to solve efficiently linear programming models

 $to\ recognize\ and\ apply\ the\ appropriate\ tools\ for\ solving\ linear\ programming\ problems.$

 $to\ analyze,\ recognize\ and\ apply\ the\ most\ suitable\ methodologies\ and\ respective\ algorithms\ to\ solve\ particular\ linear$

To know and understand the basic concepts of Reliability Now To know and understand the basic concepts of Reliability, And To perform the modelling of Reliability Engineering problem. To be in position to perform computations of Reliability, And To recognize, understand and apply the appropriate tools of the know and understand the basic concepts of dynamic problems to be able to solve efficiently dynamic programming problems.	Availability and Maintainability measures ms vailability and Maintainability for solving Reliability Engineering problems ogramming theory
General Competences Taking into consideration the general competences that the Supplement and appear below), at which of the following a Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work	ne degree-holder must acquire (as these appear in the Diploma does the course aim? Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism
Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Production of free, creative and inductive thinking Others
Search for, analysis and synthesis of data and information, Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment	with the use of the necessary technology

programming cases.

(3) SYLLABUS

Introduction to operations research, linear programming, modelling, Simplex method, Big M method, duality, sensitivity analysis. IOR Tutorial and Excel Solver. Network optimization, graphs and networks, the shortest path, minimum spanning trees, maximum flow problem, minimal cost flow problem. Dynamic Programming. System Reliability. Elements of stochastic modelling

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Distance learning		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND	Use of ICT in teaching, use of specific software		
COMMUNICATIONS TECHNOLOGY			
Use of ICT in teaching, laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	30	
described in detail.	study and analysis of bibliography	75	
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,	laboratory practice	6	
tutorials, placements, clinical practice, art	Essay writing	36	
workshop, interactive teaching, educational	exams	3	
visits, project, essay writing, artistic creativity,		<u> </u>	
etc.			
The student's study hours for each learning	Course total	150	
activity are given as well as the hours of non-			
directed study according to the principles of the			
ECTS			
STUDENT PERFORMANCE			
EVALUATION	Essay writing 40% of final grade and Final		
Description of the evaluation procedure			
	examination 60% of Final grade		
Language of evaluation, methods of evaluation,			
summative or conclusive, multiple choice			
questionnaires, short-answer questions, open-			
ended questions, problem solving, written work,			
essay/report, oral examination, public			
presentation, laboratory work, clinical			
examination of patient, art interpretation, other			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to			
students.			

(5) ATTACHED BIBLIOGRAPHY

Suggested bibliography:

Basic bibliography: F.S. Hillier, G. J. Lieberman, Introduction to Operations Research, 8th edition, Mc Graw-Hill International Edition

Operations Research: Applications and Algorithms W. L. Winston Duxbury Press, 2003 ISBN 978-0534380588 1440 Pages

Linear Programming J.P. Ignizio, T.M. Cavalier Prentice Hall, 1993 ISBN 978-0131837575 666 Pages

Operations Research: Principles and Practice A. Ravindran, D.T. Philips, J.J. Solberg Wiley, 1987 ISBN 978-0471086086 656 Pages Linear Programming and Network Flows M. S. Bazaraa, J.J. Jarvis, H.D. Sherall Wiley, 1990 ISBN 684 Pages

Introduction to Operations Research Techniques H. G. Daellenbach, J. A. George Allyn and Bacon, 1983 ISBN 978-0205079742 750 Pages

Model Building in Mathematical Programming H. P. Williams Wiley, 1999 ISBN 978-0471997887 368 Pages

An Introduction to Management Science: Quantitative Approaches to Decision Making D.R. Anderson, D.J. Sweeney, T.A. Williams, J.D. Camm, R.K. Martin South-Western College Pub, 2011 ISBN 978- 1111532222 896 Pages

Tools for Thinking: Modelling in Management Science M. Pidd Wiley, 2003 ISBN 978-0470847954 332 Pages

Introduction to Management Science B.W. Taylor, Prentice Hall, 2009 ISBN 978-0136064367 840 Pages

A. Practical Introduction to Management Science D.A. Waters Addison Wesley Publishing Company, 1998 ISBN 978-0201178470 584 Pages

Introduction to Stochastic Processes, E. Cinlar, Prentice-Hall, Engenwood Cliffs, 1975

Probability and Statistics with Reliability, Queuing, and Computer Science Applications K.S. Trivedi
Wiley-Interscience, 2002
ISBN 978-0471333418
830 Pages

Introduction to Probability Models S.M. Ross Academic Press, 2009 ISBN 978-0123756862 800 Pages

Related academic journals:

European Journal of Operational Research, Reliability Engineering and System Safety, IEEE transactions on Reliability, etc.....